In the radar chart, the values can be visualized in different categories, such as product properties. Each category corresponds to an axis. Different filter characteristics, such as regions or user segments, can also be compared using the categories. The filter characteristics are superimposed as transparent layers in the chart.
Example:
Various property variables, such as Friendly (top2), Positive (top2), etc., are used as axes of the radar chart. Two groups, "Filter1" and "Filter2", are compared based on these properties. They are visualized as superimposed layers in the radar chart.
This chart can be built as follows:
1.The codebook question with which the radar chart is to be built contains one characteristic per category (= axis in the radar chart), e.g. the calculated Top2 value of the respective variable from the data set. In the codebook example below, these categories are defined in the codebook question "Properties".
2. If you want to visualize the radar chart categories for a specific group or want to compare for different groups, you need one or more filter characteristics. In the example below, the characteristics of the "Filter" question are provided as filter categories.
3. Frontend
A radar chart is now created in the DataLion frontend with the question with the various categories (here top 2 values of properties).
The two forms of the filter question ("Filter1" and "Filter2") are now drawn onto the chart as a split filter. They are visualized as transparent layers in the chart.
Codebook of the example:
Id;Question_id;Variable;Value;Cat;Short_description;Description;Chart_type;Levels;Imported;Order;Sortprio;Settings;Weight;Parent_id
1;1;var1;;Frage;Eigenschaften;Eigenschaften;radar;Variablen;;;;;;
2;1;var1;{{= (SUM(CASE WHEN var1 IN (1,2) THEN 1 ELSE NULL END)/SUM(CASE WHEN var1 IN (1,2,3,4,5) THEN 1 ELSE NULL END))*100}};Auspr;Eigenschaften;Freundlich;radar;Variablen;;;;;;
3;1;var2;{{= (SUM(CASE WHEN var2 IN (1,2) THEN 1 ELSE NULL END)/SUM(CASE WHEN var2 IN (1,2,3,4,5) THEN 1 ELSE NULL END))*100}};Auspr;Eigenschaften;Positiv;radar;Variablen;;;;;;
4;1;var3;{{= (SUM(CASE WHEN var3 IN (1,2) THEN 1 ELSE NULL END)/SUM(CASE WHEN var3 IN (1,2,3,4,5) THEN 1 ELSE NULL END))*100}};Auspr;Eigenschaften;Kreativ;radar;Variablen;;;;;;
5;1;var4;{{= (SUM(CASE WHEN var4 IN (1,2) THEN 1 ELSE NULL END)/SUM(CASE WHEN var4 IN (1,2,3,4,5) THEN 1 ELSE NULL END))*100}};Auspr;Eigenschaften;Flexibel;radar;Variablen;;;;;;
6;1;var5;{{= (SUM(CASE WHEN var5 IN (1,2) THEN 1 ELSE NULL END)/SUM(CASE WHEN var5 IN (1,2,3,4,5) THEN 1 ELSE NULL END))*100}};Auspr;Eigenschaften;Motivierend;radar;Variablen;;;;;;
7;2;Filter;;Frage;Filter;Filter;b-bar;Variablen;;;;;;
8;2;Filter;1;Auspr;Filter;Filter1;b-bar;Variablen;;;;;;
9;2;Filter;2;Auspr;Filter;Filter2;b-bar;Variablen;;;;;;
Dataset of the example:
var1;var2;var3;var4;var5;Filter
1;2;1;1;1;1
2;2;2;1;1;1
3;2;1;1;2;1
2;2;2;1;1;1
5;3;1;1;1;1
1;3;2;2;1;1
2;3;3;2;1;2
3;1;3;2;1;2
2;1;3;2;1;2
1;1;4;2;4;2
1;2;4;2;4;2
2;5;4;2;4;1
1;1;4;4;4;1
1;1;5;4;4;1
1;1;5;5;4;1
Note: In the case of stacked data, i.e. codebook questions with characteristics and values, the characteristics are visualized as layers and the values as categories of the radar chart (axes).
Example code book:
Result:
Kommentare
0 Kommentare
Bitte melden Sie sich an, um einen Kommentar zu hinterlassen.